Minggu, 04 November 2012

Cara Menerapkan Konsep Ekologi Ekosistem Dalam Bidang Kehutanan

Hutan merupakan salah satu sumberdaya yang bersifat dapat dipulihkan (renewable atau funding resource). Oleh karena itu pengelolaannya harus berdasarkan pada prinsip-prinsip sustainable (sustainable – based principle) dari semua manfaat yang bisa diperoleh dari hutan sebagai sumberdaya sekaligus sebagai ekosistem. Berhubung di alam ini antara ekosistem yang satu berinteraksi dengan ekosistem yang lain, maka konteks pengelolaan hutan harus berdasarkan pada anggapan bahwa hutan merupakan salah satu bagian integral dari ekosistem yang lebih besar dimana hutan tersebut berada, yaitu suatu Daerah Aliran Sungai (DAS) sebagai satu kesatuan bentang darat. Dalam rangka mencapai azas kelestarian (sustainable), laju ekstraksi sumbedaya hutan tidak boleh melebihi laju daya pemulihan dari ekosistem hutan tersebut. Dalam konteks penebangan kayu, besar volume kayu yang ditebang tidak boleh melebihi riap volume tegakan hutan, sedangkan dalam konteks pemanfaatan secara umum, pemanfaatan hutan sebagai ekosistem tidak boleh melebihi daya dukung maksimum dari ekosistem tersebut. Secara ideal, derajat pemanfaatan hutan harus diupayakan pada tingkat daya dukung optimalnya atau paling tinggi berada pada kisaran nilai antara daya dukung optimal dengan daya dukung maksimumnya. Hal ini dimaksudkan agar pemanfaatan hutan tidak menimbulkan derajat gangguan lingkungan yang melebihi daya asimilatif dari ekosistem hutan tersebut.
Hutan dapat menghasilkan berbagai macam barang (kayu dan hasil hutan bukan kayu) dan jasa lingkungan (air, oksigen, keindahan alam, penyerap berbagai polutan, dan lain-lain), sehingga hutan bersifat multimanfaat. Sehubungan dengan ini pengelolaan hutan seyogyanya tidak boleh memaksimumkan perolehan dari satu macam manfaat saja (misal kayu) dengan mengorbankan manfaat-manfaat lainnya, karena berbagai macam manfaat hutan tersebut merupakan satu kesatuan yang utuh. Hutan dapat secara berkelanjutan memberikan manfaatnya bila proses ekologis internal dalam ekosistem hutan tersebut tidak terganggu atau terganggu tetapi tidak menimbulkan stress ekologis yang bersifat irreversible. Oleh karenanya, ekosistem hutan harus dibuat tahan terhadap gangguan dengan cara mempertahankan keanekaragaman hayati (biodiversity) hutan yang tetap tinggi. Dengan demikian, pengelolaan hutan harus dilakukan secara tepat agar ragam dan derajat pemanfaatan hutan, yang tidak lain adalah berupa “tindakan gangguan” terhadap hutan, harus dilakukan sedemikian rupa agar tidak melampaui daya recovery dari ekosistem hutan yang bersangkutan sebagai respons terhadap gangguan tersebut.
Tantangan untuk pengelolaan kehutanan yang berkelanjutan adalah mendefinisikan atribut ekosistem hutan yang secara ekologis dan sosial sangat penting dan untuk memaksimalkan layanan ekosistem ini dalam menghadapi perubahan. Manajemen berkelanjutan produksi kayu adalah salah satu dari banyak kemungkinan tujuan untuk pengelolaan ekosistem hutan dan memberikan contoh yang baik tentang perlunya ekosistem ekologi dalam manajemen. Beberapa masalah yang ditangani oleh kehutanan yang berkelanjutan. Tingkat pasokan gizi, misalnya, harus mencukupi untuk mendukung pertumbuhan yang cepat namun tidak begitu tinggi bahwa mereka menyebabkan kehilangan unsur hara yang besar. Tingkat di mana berdiri dipanen harus seimbang dengan tingkat mereka dari regenerasi setelah penebangan. Spesies khas alam keanekaragaman hutan harus dijaga.
Ukuran dan susunan yang masuk harus memberikan mosaik lanskap seminatural dengan sumber benih diandalkan dan pola hutan tepi yang memungkinkan penggunaan alami dan bergerak menjadi populasi hewan. Mengatasi masalah ini membutuhkan perhatian dan pengelolaan kontrol interaktif, ada terdapat gangguan , jenis tanaman fungsional, dan sumber daya tanah sangat penting. Di utara barat Amerika Serikat, misalnya, lama pertumbuhan Douglas cemara hutan mencapai usia lebih dari 500 tahun (Wills dan Stuart 1994). Panas dan angin yang menghampiri pohon individu tersebut mengalami gangguan, menciptakan mosaik pohon pada beberapa skala usia yang lama. Gangguan yang masuk sekarang ini yang paling luasnya adalah di wilayah ini. Gangguan yang masuk dari alam berbeda-beda. Rezim dengan mempengaruhi wilayah yang lebih luas, terjadi lebih sering, menghilangkan nitrogen terikat dalam biomassa, dan meningkatkan kemungkinan tanah erosi. Pada beberapa situs, penanaman nitrogen memperbaiki dalam hubungan dengan regenerasi. Douglas cemara dapat mengkompensasi kerugian nitrogen selama penebangan (Binkley et al. 1992) dan bias juga mengurangi erosi. Di sisi lain, pengelolaan ini bisa tidak diinginkan efek dalam situs kaya nitrogen, di mana nitrogen tidak membatasi, dan persaingan dari alder selama suksesi awal bisa mengurangi produktivitas bibit pohon dan berpotensi menyebabkan kerugian nutrisi yang lebih tinggi. Strategi untuk pengelolaan hutan yang merangkul ekologi prinsip-prinsip akan mengenali variabilitas yang melekat dalam ekosistem negara faktor dan kontrol interaktif dan akan memilih praktik manajemen dalam arti luas konteks lingkungan.
Ovington (1974) melaporkan bahwa lebih kurang setengah dari seluruh luas hutan didunia (1.800 juta hektar) terletak dikawasan tropika. Dari seluruh kawasan hutan di daerah tropika kira-kira seperempatnya (400 juta hektar) terletak diwilayah Asia-Pasifik. Hampir seluruh hutan yang terdapat di kawasan Asia-Pasifik adalah hutan alam, artinya, hutan yang tidak ditanam. Oleh karena itu, eksploitasi hutan untuk keperluan perdagangan mula-mula terhalang oleh kesukaran menempuh hutan tropika dan pengetahuan yang masih terbatas mengenai kekayaan hutan tropika. Tetapi setelah pengetahuan serta kebutuhan kayu meningkat, produksi kayu per hektar di kawasan Asia-Pasifik meningkat pula dengan sangat pesatnya. Volume kayu yang ditebang dari kawasan ini semakin hari semakin besar, bahkan sampai pada tingkat yang mengkhawatirkan masa depan wilayah bekas hutannya. Belum lagi ditambah oleh suatu kenyataan umum, bahwa kalau kita memerlukan wilayah baru untuk pemukiman atau pertanian, wilayah hutan pulalah yang harus menjadi korban. Terlebih-lebih dinegara yang padat penduduknya seperti di negara kita ini, masa depan wilayah hutan itu memang jelas dapat diramalkan. Hutan akan semakin habis, kecuali kalau ada usaha untuk melakukannya. 
Maka dari itu, pelestarian atau pengawetan hutan dapat dilakukan dengan cara sebagai berikut :
1.     Memperbaiki klasifikasi lahan hutan melalui klasifikasi ulang beberapa daerah seperti hutan lindung, dengan tujuan untuk menetapkan kawasan lindung yang mewakili semua jenis habitat di Indonesia dan melindungi daerah unik yang kerusakannya relatif rendah, sedemikian rupa sehingga regenerasi alami dapat berlangsung.
2.     Melakukan pengelolaan hutan secara berkelanjutan merupakan proses mengelola lahan hutan permanen untuk mencapai satu atau beberapa tujuan, yang dikaitkan dengan produksi hasil dan jasa hutan secara terus menerus dengan mengurangi dampak lingkungan fisik dan sosial yang tidak diinginkan.Pengelolaan hutan berkelanjutan sebagai bentuk pengelolaan hutan yang memiliki sifat ‘hasil yang lestari’, ditunjukkan oleh terjaminnya keberlangsungan fungsi produksi hutan, fungsi ekologis hutan dan fungsi sosial-ekonomi-budaya hutan bagi masyarakat lokal. 
Keuntungan dari pengelolaan hutan berkelanjutan adalah :
1.     Hasil yang terus mengalir dan berkelanjutan dalam bentuk kayu dan hasil serta hasil hutan lainnya.
2.      Mempertahankan keanekaragaman hayati yang tinggi dalam konteks perencanaan tata guna lahan terpadu yan meliputi jaringan kawasan lindung dan kawasan konservasi.
3.      Mempertahankan ekosistem hutan yang stabil
Reboisasi bertujuan untuk menghutankan kembali kawasan hutan kritis di wilayah daerah aliran sungai (DAS) yang dilaksanakan bersama masyarakat secara partisipatif.Kegiatan utamanya adalah penanaman kawasan hutan dengan tanaman hutan dan tanaman kehidupan yang bermanfaat yang dilaksanakan secara partisipatif oleh masyarakat setempat. Penanaman ini bertujuan untuk meningkatkan tingkat penutupan lahan yang optimal sekaligus memberi manfaat bagi masyarakat setempat sehingga tercipta keharmonisan antara hutan dan masyarakat.  Dengan reboisasi dan penghijauan lahan, laju evapotranspirasi dan air simpanan meningkat. Reboisasi dan penghijuan yang berhasil akan menurunkan aliran air permukaan tetapi sekaligus meningkatkan air simpanan dalam tanah. Namun kenyataan yang ada rebosisasi dan penghijauan seringkali tidak hanya menurunkan aliran air tetapi juga mengurangi air simpanan, karena adanya evapotranspirasi dan intersepsi oleh tajuk hutan. Apabila reboisasi dan penghijauan yang hanya menanam pohon yang tinggi tanpa memperhatikan adanya tumbuhan bawah dan serasah justru akan menaikkan erosi. Berdasarkan hal tersebut maka dalam penghijauan dan reboisasi sebaiknya memperhatikan pohon yang dipilih mempunyai ujung penetes yang sempit dan ada tumbuhan bawah dan serasah, tumbuhan bawah dapat berupa rumput.

Penetapan lahan kritis ini mengacu pada definisi lahan kritis yang ditetapkan sebagai lahan yang telah mengalami kerusakan sehingga kehilangan atua berkurang fungsinya sampai pada batas toleransi. Sasaran rehabilitasi adalah lahan-lahan kritis di kawasan hutan.  Rehabilitasi lahan adalah usaha memperbaiki ,memulihkan kembali dan meningkatkan kondisi lahan yang rusak agar dapat berfungsi secara optimal. Baik sebagai unsur produksi, media pengatur tata air maupun sebagai unsur perlindungan alam dan lingkungannya. Konservasi lahan adalah pengelolaan lahan yang pemanfaatannya dilakukan secara bijaksana untuk menjamin kesinambungan persediaannya dengan tetap memelihara serta meningkatkan kualitas keanekaragaman dan nilainya.

Diposting oleh : Rezky Rahmayanti / J1C111043
Diedit oleh AK tangggal 4 November 2012

Selasa, 23 Oktober 2012

soal ujian ekologi semester ganjil 2012/2013


Soal Ujian Ekologi Semester Ganjil 2012 / 2013
PS Biologi FMIPA Universitas Lambung Mangkurat
Materi : Ekologi Ekosistem
Waktu Ujian : 50 Menit
Dosen : Anang Kadarsah, S.Si., M.Si.
1. Jelaskan apa yang kamu ketahui mengenai ekologi ekosistem :
a. Pengertian
b. Komponen penyusun
c. Batasan dan ukuran
d. Proses yang terjadi di dalamnya.
2. Jelaskan aplikasi konsep ekosistem dalam bidang :
a. Kehutanan
b. Pertanian
c. Restorasi
d. Pengelolaan spesies terancam
Keterangan :
1. Sifat ujian Open Book!
2. Dikumpulkan kepada pak Muhamat
3. Berusaha sendiri dan tidak dibenarkan memberikan contekan kepada temannya.
4. INGAT : JUJURLAH KEPADA DIRI KAMU SENDIRI!

Minggu, 21 Oktober 2012

Materi 3 Aplikasi ekologi ekosistem

Materi 3 Aplikasi ekologi ekosistem

Materi 2 Piramida Ekologi dan NUE

Materi 2 Piramida Ekologi dan NUE

Materi 1 Konsep Ekologi Ekosistem

Materi 1 Konsep Ekologi Ekosistem 

PENGERTIAN SIKLUS BIOGEOKIMIA


A.    PENGERTIAN SIKLUS BIOGEOKIMIA
Siklus biogeokimia atau yang biasa disebut dengan siklus organik-anorganik adalah siklus unsur-unsur atau senyawa kimia yang mengalirdari komponen abiotik ke komponen biotik dan kembali lagi ke komponen abiotik. Siklus unsur-unsur tersebut tidak hanya melalui organisme, tetapi juga melibatkan reaksi-reaksi kimia dalam lingkungan abiotik sehingga disebut sebgai siklus biogeokimia.
Siklus biogeokimia yang terjadi di alam dapat berupa silkus air, siklus oksign dan karbondioksida (karbon), siklus nitrogen, dan siklus materi (mineral) yang berupa unsur-unsur hara.
1.      Siklus Karbon
Siklus karbon adalah siklus biogeokimia di mana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer bumi. Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah:
      1.    Atmosfer
    2.    Biosfer Teresterial, meliputi freshwater sistem dan material nonhayati organik seperti soil karbon (karbon  tanah)
     3.    Lautan, meliputi karbon anorganik terlarut dan biota laut hayati atau nonhayati
     4.    Sedimen, meliputi bahan baker fosil
     Pertukaran karbon antara reservoir terjadi karena proses kimia, fisika, geologi, dan biologi yang bermacam-macam.
Karbon di Atmosfer
Kandungan karbon terbesar yang terdapat diatmosfer bumi adalah gas karbondioksida (CO2) sebesar 0.03%. Meskipun jumlah gas ini merupakan bagian yang sangat kecil dari seluruh gas yang ada di atmosfer, namun gas ini memiliki peran penting dalam menyokong kehidupan gas-gas lain yang mengandung karbon di atmosfer semakin bertambah selama beberapa tahun terakhir ini dan berperan dalam peningkatan pemanasan global.
Karbon dapat diambil dari atmosfer dengan berbagai cara, antara lain:
1.      Melalui proses fotosintesis
Ketika matahari bersinar, tumbuhan melakukan fotosintesis untuk mengunbah karbondioksida menjadi karbohidrat dan melepaskan oksigen ke atmosfer. Karbon pada proses ini akan banyak di serap oleh tumbuhan yang baru saja tumbuh atau pepohonan pada hutan yang sedang di reboisasi sehingga membutuhkan pertumbuhan yang cepat
2.      Melalui sirkulasi termohalin
Pada permukaan laut di daerah kutub, air laut menjadi lebih dingin dan karbondioksida lebih mudah larut dalam air. Karbondioksida yang larut tersebut akan terbawa oleh sirkulasi termohalin yang membawa massa air di permukaan yang lebih berat menuju ke dalam laut. Di laut bagian atas , pada daerah yang poduktivitasnya tinggi organisme membentuk cangkang karbonat dengan bagian-bagian tubuh lainnya yang keras. Proses ini menyebabkan aliran karbon menuju ke bawah.
3.      Melalui pelapukan batu silikat
Proses ini tidak memindahkan karbon ke dalam reservoir yang siap untuk kembali ke atmosfer seperti dua proses sebelumnya. Pelapukan batuan silikat tidak memilki efek yang terlalu besar terhadap karbondioksida pada atmosfer karena ion karbonat pada atmosfer yang terbentuk terbawa oleh air laut dan selanjutnya akan dipakai untuk membuat karbonat laut.
Karbon dapat kembali lagi ke atmosfer dengan beragai cara pula antara lain:
4.      Melalui respirasi tumbuhan dan binatang
Proses ini merupakan reaksi eksotermik dan termasuk juga penguraian glukosa menjadi karbohidrat        dan air.
5.      Melalui pembusukan, tumbuhan, dan binatang
Jamur dan bakteri menguraikan senyawa karbon pada tumbuhan dan binatang yang mati dan mengubah karbon menjadi karbon dioksida jika tersedia aksigen atau menjadi metana jika tidak tersedia oksigen
6.      Melalui pembakaran material organik
Proses ini berlangsung dengan cara mengoksidasi karbon yang terkandung pada material organik menjadi karbondioksida. Pembakaran bahan bakar fosil seperti batu bara, minyak bumi, dan gas alam akan melepaskan karbon yang tersimpan di dalam geosfer, sehingga menyebabkan kadar karbon dioksida di atmosfer semakin bertambah.
7.      Melalui produksi semen
Salah satu komponen semen yaitu kapur atau kalium oksida dihasilkan dengan cara memanaskan batu kapur yang akan menghasilkan karbon dioksida dalam jumlah banyak.
8.      Melalui erupsi vulkanik
Erupsi vulkanik atau ledakan gunung berapi akan melepasakan gas ke atmosfer. Gas-gas tersebut termasuk uap air, karbon dioksida, dan belerang. Jumlah karbon dioksida yang dilepas ke atmosfer hampir sama dengan jumlah karbon dioksida yang hilang dari atmosfer akibat pelapukan batuan silikat.
9.      Melalui pemanasan permukaan laut
Di permukaan laut, ketika air laut menjadi lebih hangat, karbon dioksida yang larut dalam air akan dilepas ke atmosfer sebagai uap air.
Karbon di Biosfer
Dalam biosfer terdapat sekitar 1900GtC gas karbon dioksida dan oksigen. Karbon adalah bagian yang penting dalam menunjang kehidupan di bumi, karena karbon berperan dalam strutur biokimia dan nutrisi pada semua sel makhluk hidup. Proses-proses perpindahan karbon di biosfer sama dengan proses perpindahan karbon di atmosfer, karena semua proses yang terjadi di atmosfer harus melalui biosfer terlebih dahulu.  
Karbon di Laut
Laut mengandung sekitar 36000 GtC ion karbonat yang merupakan kandungan umum. Karbon anorganik, yaitu senyawa karbon tanpa ikatan karbon-karbon atau karbon-hidrogen, adalah penting dalam reaksi yang terjadi pada air. Pertukaran karbon penting untuk mengontrol pH di laut dan dapat di jadikan sebagai sumber. Proses pertukaran karbon antara atmosfer dengan lautan diawali dengan pelepasan karbon ke atmosfer yang terjadi di daerah upwelling (lautan bagian atas), kemudian pada daerah downwelling (laut bagian bawah), karbon berpindah dari atmosfer kembali ke lautan. Pada saat CO2 memasuki lautan, asam karbonat terbentuk dengan reaksi kimia:
     CO2 + H2O                  H2CO3
   Reaksi tersebut memiliki sifat dua arah  untuk mencapai suatu kesetimbangan kimia. Reaksi lain yang penting dalam mengontrol nilai pH larutan adalah pelepasan ion hidrogen dan bikarbonat, dimana dapat menyebabkan perubahan yang besar pada pH, yaitu H2CO3 H+ + HCO3-
Terdapat lebih banyak persenyawaan karbon yang dikenal daripada persenyawaan unsur lain kecuali hydrogen. Kebanyakan dikenal sebagai zat-zat kimia organic. Keistimewaan karbon yang unik adalah kecenderungannya secara alamiah mengikat dirinya sendiri dalam rantai-rantai atau cincin-cincin , tidak hanya dengan ikatan tunggal, C-C, tetapi juga mengandung ikatan ganda, C=C atau C=C . Di atmosfer terdapat kandungan COZ sebanyak 0.03%. Sumber-sumber COZ di udara berasal dari respirasi manusia dan hewan, erupsi vulkanik, pembakaran batubara, dan asap pabrik. Karbon dioksida di udara dimanfaatkan oleh tumbuhan untuk berfotosintesis dan menghasilkan oksigen yang nantinya akan digunakan oleh manusia dan hewan untuk berespirasi. Hewan dan tumbuhan yang mati, dalam waktu yang lama akan membentuk batubara di dalam tanah. Batubara akan dimanfaatkan lagi sebagai bahan bakar yang juga menambah kadar C02 di udara.
Di ekosistem air, pertukaran C02 dengan atmosfer berjalan secara tidak langsung. Karbon dioksida berikatan dengan air membentuk asam karbonat yang akan terurai menjadi ion bikarbonat. Bikarbonat adalah sumber karbon bagi alga yang memproduksi makanan untuk diri mereka sendiri dan organisme heterotrof lain. Sebaliknya, saat organisme air berespirasi, COz yang mereka keluarkan menjadi bikarbonat. Jumlah bikarbonat dalam air adalah seimbang dengan jumlah C02 di air.
Siklus karbon adalah siklus biogeokimia dimana karbon dipertukarkan antara biosfer, geosfer, hidrosfer, dan atmosfer Bumi (objek astronomis lainnya bisa jadi memiliki siklus karbon yang hampir sama meskipun hingga kini belum diketahui). Dalam siklus ini terdapat empat reservoir karbon utama yang dihubungkan oleh jalur pertukaran. Reservoir-reservoir tersebut adalah atmosfer, biosfer teresterial (biasanya termasuk pula freshwater system dan material non-hayati organik seperti karbon tanah (soil carbon)), lautan (termasuk karbon anorganik terlarut dan biota laut hayati dan non-hayati), dan sedimen (termasuk bahan bakar fosil). Pergerakan tahuan karbon, pertukaran karbon antar reservoir, terjadi karena proses-proses kimia, fisika, geologi, dan biologi yang bermaca-macam. Lautan mengadung kolam aktif karbon terbesar dekat permukaan Bumi, namun demikian laut dalam bagian dari kolam ini mengalami pertukaran yang lambat dengan atmosfer.
Karbon dioksida (rumus kimia: CO2) atau zat asam arang adalah sejenis senyawa kimia yang terdiri dari dua atom oksigen yang terikat secara kovalen dengan sebuah atom karbon. Ia berbentuk gas pada keadaan temperatur dan tekanan standar dan hadir di atmosfer bumi. Rata-rata konsentrasi karbon dioksida di atmosfer bumi kira-kira 387 ppm berdasarkan volume [1] walaupun jumlah ini bisa bervariasi tergantung pada lokasi dan waktu. Karbon dioksida adalah gas rumah kaca yang penting karena ia menyerap gelombang inframerah dengan kuat.
Karbon dioksida dihasilkan oleh semua hewan, tumbuh-tumbuhan, fungi, dan mikroorganisme pada proses respirasi dan digunakan oleh tumbuhan pada proses fotosintesis. Oleh karena itu, karbon dioksida merupakan komponen penting dalam siklus karbon. Karbon dioksida juga dihasilkan dari hasil samping pembakaran bahan bakar fosil. Karbon dioksida anorganik dikeluarkan dari gunung berapi dan proses geotermal lainnya seperti pada mata air panas. Karbon dioksida tidak mempunyai bentuk cair pada tekanan di bawah 5,1 atm namun langsung menjadi padat pada temperatur di bawah -78 °C. Dalam bentuk padat, karbon dioksida umumnya disebut sebagai es kering. Neraca karbon global adalah kesetimbangan pertukaran karbon (antara yang masuk dan keluar) antar reservoir karbon atau antara satu putaran (loop) spesifik siklus karbon (misalnya atmosfer - biosfer). Analisis neraca karbon dari sebuah kolam atau reservoir dapat memberikan informasi tentang apakah kolam atau reservoir berfungsi sebagai sumber (source) atau lubuk (sink) karbon dioksida.
2.Siklus Nitrogen
Beberapa jenis bakteri yang dapat menambat nitrogen terdapat pada akar legume tumbuhan lain, misalnya Marsiella Siklus nitrogen merupakan proses pembentukan dan penguraian nitrogen sebagai sumber protein utama di alam. Nitrogen menjadi penyusun utama protein dan sangat diperlukan oleh tumbuhan dan hewan dalam jumlah besar. Nitrogen diperlukan tumbuhan dalam bentuk terikat (ikatan suatu senyawa dengan unsur lain). Nitrogen bebas dapat difiksasi (di ikat) di dalam tanah oleh bakteri yang bersifat simbiotik dan dapat mengikat protein jika bekerjasama dengan akar tumbuhan polong, yang mempunyai bintil akar, rumpun tropik, dan beberapa jenis gangaang.
crenata. Selain itu terdapat bakteri dalam tanah yang dapat memikat nitrogen secara langsung, yaitu acetobacter sp yang bersifat aerob dan clostridium sp. yang bersifat anaerob. Selain itu, terdapat beberapa jenis spesies gangganng biru yang dapat menambat nitrogen, antara lain nostoc sp. dan anabaena sp.
Tumbuhan memperoleh nitrogen di dalam tanah berupa amonia (NH3), ion nitrit (NO2-), dan ion nitrat (NO3-). Dalam tanah nitrogen terdapat dalam organik tanah di berbagai tahap pembusukan, namun belum dapat dimanfaatkan tumbuhan. Nitrogen yang dimanfaatkan tumbuhan biasanya terikat dalam bentuk ammonium dan (NH4+) ion nitrat (NO3-).
Amonia diperoleh dari hasil penguraian jaringan yang mati dan oleh bakteri. Amonia ini dapat dinitrifikasi oleh bakteri nitrit, yaitu nitrosomonas dan nitrosococcus menjadi NO2-. Selanjutnya oleh bakteri denitrifikasi, yaitu pseudomonas denitrifikasi, nitrat diubah kembali menjadi ammonia dan ammonia diubah kembali menjadi nitrogen yang dilepas bebas ke udara. Dengan cara ini siklus nitrogen akan berulang dalam ekosistem.
Nitrat sangat mudah larut dalam tanah, sehinga cepat hilang karena proses pembusukan. Taraf ketersesisaan nitrogen dalam tanah tergantung pada banyaknya bahan organik, populasi zat-zat renik, dan tingkat pembasuhan tanah oleh air. Dalam keadaan alami terjadi keseimbangan antara laju pertumbuhan dan gaya-gaya yang menentukan penyediaan nitrogen dalam tanah. Proses pemanenan menyebabkan sejumlah besar nitrogen terikat hilang akibat tanah mengalami pembasuhan oleh gerak aliran air dan kegiatan jasad renik. Selain itu nitrogen terikat juga hilang, karena diambil oleh bakteri pengubah nitrat menjadi nitrogen. Hal ini menyebabkan pertanian intensif sangat tergantung pada tambahan pupuk nitrogen.
Bakteri penghasil ion nitrit dan nitrat bersifat autotrof dan aerob, sehingga kehidupannya dipengaruhi oleh aerosotama, suhu, dan kandungan air dalam tanah. Sementara itu proses perubahan nitrit menjadi nitrogen bersifa
Nitrogen terdapat di alam terutama sebagai dinitrogen, N2 (titik didih 77,3 K). Gas nitrogen banyak terdapat di atmosfer, yaitu 80% dari udara. Nitrogen bebas dapat ditambat/difiksasi terutama oleh tumbuhan yang berbintil akar (misalnya jenis polongan) dan beberapa jenis ganggang. Nitrogen bebas juga dapat bereaksi dengan hidrogen atau oksigen dengan bantuan kilat/ petir. Tumbuhan memperoleh nitrogen dari dalam tanah berupa amonia (NH3), ion nitrit (N02- ), dan ion nitrat (N03- ). Beberapa bakteri yang dapat menambat nitrogen terdapat pada akar Legum dan akar tumbuhan lain, misalnya Marsiella crenata. Selain itu, terdapat bakteri dalam tanah yang dapat mengikat nitrogen secara langsung, yakni Azotobacter sp. yang bersifat aerob dan Clostridium sp. yang bersifat anaerob. Nostoc sp. dan Anabaena sp. (ganggang biru) juga mampu menambat nitrogen. Nitrogen yang diikat biasanya dalam bentuk amonia. Amonia diperoleh dari hasil penguraian jaringan yang mati oleh bakteri. Amonia ini akan dinitrifikasi oleh bakteri nitrit, yaitu Nitrosomonas dan Nitrosococcus sehingga menghasilkan nitrat yang akan diserap oleh akar tumbuhan. Selanjutnya oleh bakteri denitrifikan, nitrat diubah menjadi amonia kembali, dan amonia diubah menjadi nitrogen yang dilepaskan ke udara. Dengan cara ini siklus nitrogen akan berulang dalam ekosistem.

3.Siklus Fosfor
Di alam, fosfor terdapat dalam dua bentuk, yaitu senyawa fosfat organik (pada tumbuhan dan hewan) dan senyawa fosfat anorganik (pada air dan tanah). Fosfat organik dari hewan dan tumbuhan yang mati diuraikan oleh dekomposer (pengurai) menjadi fosfat anorganik. Fosfat anorganik yang terlarut di air tanah atau air laut akan terkikis dan mengendap di sedimen laut. Oleh karena itu, fosfat banyak terdapat di batu karang dan fosil. Fosfat dari batu dan fosil terkikis dan membentuk fosfat anorganik terlarut di air tanah dan laut. Fosfat anorganik ini kemudian akan diserap oleh akar tumbuhan lagi. Siklus ini berulang terus menerus.
Siklus fosfor, bersifat kritis karena fosfor secara umum merupakan hara yang terbatas dalam ekosistem. Tidak ada bentuk gas dari fosfor yang stabil, oleh karena itu siklus fosfor adalah “endogenik”. Dalam geosfer, fosfor terdapat dalam jumlah besar dalam mineral-mineral yang sedikit sekali larut seperti hidroksiapilit, garam kalsium. Adapun gambar dari siklus fosfor adalah sebagai berikut.
      Fosfor terlarut dari mineral-mineral fosfat dan sumber-sumber lainnya, seperti pupuk fosfat, diserap oleh tanaman dan tergabung dalam asam nukleat yang menyusun material genetic dalam organisme. Mineralisasi dari biomassa oleh pembusukan/penguraian mikroba mengembalikan fosfor kepada larutan garamnya yang kemudian dapat mengendap sebagai bahan mineral. Sejumlah besar dari mineral-mineral fosfat digunakan sebagai bahan pupuk, industry kimia, dan “food additives”. Fosfor merupakan salah satu komponen dari senyawa-senyawa sangat toksik, terutama insektisida organofosfat.

4.Siklus Belerang
Siklus belerang relative kompleks dimana melibatkan berbagai macam gas, mineral-mineral yang sukar larut dan beberapa sepsis lainnya dalam larutan. Siklus ini berkaitan dengan siklus oksigen dimana belerang bergabung dengan oksigen membentuk gas belerang oksida, SO2, sebagai bahan pencemar air. Diantara spesi-spesi yang secara siknifikan terlihat dalam siklus belerang adalah gas hydrogen sulfide H2S; mineral-mineral sulfide seperti PbS; asam sulfat H2SO4; belerang oksida, SO2 komponen utama dari hujan asam; dan belerang yang terikat dalam protein. Hujan asam didefinisikan sebagai segala macam hujan dengan pH di bawah 5,6. Hujan secara alami bersifat asam (pH sedikit di bawah 6) karena karbondioksida (CO2) di udara yang larut dengan air hujan memiliki bentuk sebagai asam lemah. Jenis asam dalam hujan ini sangat bermanfaat karena membantu melarutkan mineral dalam tanah yang dibutuhkan oleh tumbuhan dan binatang.
Hujan asam disebabkan oleh belerang (sulfur) yang merupakan pengotor dalam bahan bakar fosil serta nitrogen di udara yang bereaksi dengan oksigen membentuk sulfur dioksida dan nitrogen oksida. Zat-zat ini berdifusi ke atmosfer dan bereaksi dengan air untuk membentuk asam sulfat dan asam nitrat yang mudah larut sehingga jatuh bersama air hujan. Air hujan yang asam tersebut akan meningkatkan kadar keasaman tanah dan air permukaan yang terbukti berbahaya bagi kehidupan ikan dan tanaman (wikipedia.org/wiki/Hujan_asam).
Belerang dari daratan cenderung terbawa air ke laut. Namun belerang di daratan tak tampak habis setelah jutaan tahun. Kapan belerang kembali ke darat? Melalui penguapan, kata ilmuwan zaman dulu. Tapi tak ada bukti bahwa laut menguapkan hidrogen sulfida yang baunya bukan main itu ke angkasa. Laut selalu berhawa segar.
Pertanyaan ini baru terjawab beberapa belas tahun yang lalu. Tumbuhan laut, yang memiliki sel2 sederhana. Tumbuhan ini berusaha hidup dengan menahan masuknya garam (NaCl) ke dalam selnya. Ini dilakukan dengan membentuk senyawa penahan yang berbahan baku belerang, karena pasok belerang di laut banyak sekali, datang dari daratan. Waktu sel mereka terurai, senyawa penahan ini pecah dan menghasilkan gas dimetil sulfida (DMS) yang lepas ke atmosfir. Kita pasti mengenali bau senyawa ini: segar, mirip ikan segar yang baru diangkat dari laut. Setiap saat, sejumlah besar senyawa ini dilepas ke atmosfir, dan syukurnya, senyawa ini mampu menjadi inti kondensasi uap air. Pada gilirannya, terbentuk awan, yang menjadi hujan. Saat hujan jatuh di darat, senyawa belerang ini dikembalikan ke daratan untuk dimanfaatkan makhluk daratan. Lalu ampasnya, dalam dibuang lagi (duh) ke laut, untuk diolah oleh alga-alga baik hati itu lagi. Yang merupakan bagian dari siklus belerang yang sangat penting adalah adanya gas SO2 sebagai bahan pencemar dan H2SO4 dalam atmosfer. Gas SO2 dikeluarkan dari pembakaran bahan bakar fosil yang mengandung belerang. Efek utama dari belerang dioksida dalam atmosfer adalah kecenderungan untuk teroksidasi menghasilkan asam sulfat. Asam ini dapat menyebabkan terjadinya hujan asam (Achmad, Rukaesih; 2004).

5. Siklus Oksigen
          Senyawaan oksigen dengan semua unsure kecuali He, Ne, dan mungkin Ar dikenal. Molekul oksigen (dioksigen, O2 ) bereaksi dengan semua unsur lain kecuali halogen, beberapa logam mulia, dan gas-gas mulia baik dalam suhu ruangan atau pada pemanasan. Oksigen merupakan unsur yang vital bagi kehidupan di bumi ini. Siklus oksigen ditampilkan pada gambar di bawah ini

     6.  Siklus Air
Siklus air atau siklus hidrologi adalah sirkulasi air yang tidak pernah berhenti dari atmosfer ke bumi dan kembali lagi ke atmosfer melalui proses kondensasi, prespitasi, evaporasi, dan transpirasi.
Pemanasan air samudera oleh sinar matahari merupakan kunci proses siklus hidrologi dapat berjalan secara kontinu. Air berevaporasi kemudian jatuh sebagai prespitasi dalam bentuk hujan, salju, hujan es, hujan salju bercampur es (sleet), hujan gerimis, atau kabut.
Pada perjalanan menuju bumi, beberapa prspitasi dapat berevaporasi kembali ke atas atau langsung jatuh ke bumi yang kemudian ditangkap oleh tanaman sebelum mencapai tanah. Setelah mencapai tanah, siklus hidrologi tersebut bergerak secara kontinu dalam tiga cara berbeda, yaitu:
      Evaporasi
Air yang ada di laut, di daratan, di sungai, di tanaman, dan di tempat-tempat lain akan menguap ke atmosfer dan kemudian akan menjadi awan. Pada keadaan jenuh awan uap air tersebut akan menjadi bintik-bintik air yang yang selanjutnya akan turun (precipitation) dalam bentuk hujan, salju, es, dan lain-lain.
      Infiltrasi/perkolasi
Air bergerak ke dalam tanah melalui celah-celah dan pori-pori tanah dan batuan menuju permukaan tanah. Air dapat bergerak akibat aksi kapiler atau secara vertical dan horizontal di bawah permukaan tanah hingga air tersebut memasuki kembali sistem air permukaan.
Air permukaan
Air bergerak di atas permukaan tanah di dekat aliran utama dan danau. Makin landai lahan dan makin sedikit pori-pori tanah, maka aliran permukaan semakin besar. Aliran permukaan tanah dapat dilihat pada daerah urban (perkotaan). Sungai-sungai kecil bergabung dan membentuk sungai utama yang membawa seluruh air permukaan disekitar aliran sungai menuju laut. Proses perjalanan air di daratan terjadi dalam komponen-komponen yang membentuk sistem DAS (Daerah Aliran Sungai).
7. Siklus Materi (Mineral)
Beberapa mineral atau unsur hara yang penting bagi tumbuhan adalah fosfor, kalium, kalsium, magnesium, dan belerang. Di alam, fosfor terdapat dalam dua bentuk, yaitu senyawa fosfat organik (pada tumbuhan dan hewan) dan senyawa fosfat anorganik (pada air dan tanah). Fosfor terdapat dalam asam nukleat yang berperan dalam mengangkut energi dan diperlukan dalam jumlah kecil dan dalam bentuk supefosfat. Fosfor lebih tahan pembasuhan dan ketersediannya di alam bergantung pada pH tanah.
Fosfat organik dari hewan dan tumbuhan yang mati diuraikan oleh dekomposer menjadi fosfat anorganik. Fosfat anorganik yang terlarut dalam air atau air laut akan terkikis dan mengendap dalam sediment laut. Oleh karena itu, fosfat banyak terdapat di batu karang dan fosil. Fofat dan batu karang dan fosil yang terkikis akan membentuk fosfat anorganik kembali yang terlarut di air tanah dan air laut. Fosfat anorganik ini kemudian akan diserap oleh akar tumbuhan
Kalium diperlukan dalam jumlah sedang dan tersedia di alam sebagai ion yang terdapat pada tumbuhan koloid tanah. Pada tanah humus terdapat banyak kalium, tetapi dalam bentuk yang tidak dapat dimanfaatkan secara langsung sehingga perlu pemupukan kalium  yang dibutuhkan tanah dalam bentuk kalium iodida.
B.  DAUR SIKLUS BIOGEOKIMIA
Siklus biogeokimia merupakan siklus atau proses perputaran yang secara tetap atau berpola, daur siklus biogeokimia meliputi Daur Karbon dan Oksigen, Daur nitrogen, Daur Fosfor, Daur Air
Proses timbal balik fotosintesis dan respirasi seluler bertanggung jawab atas perubahan dan pergerakan utama karbon. Naik turunnya CO2 dan O2 atsmosfer secara musiman disebabkan oleh penurunan aktivitas Fotosintetik. Dalam skala global kembalinya CO2 dan O2 ke atmosfer melalui respirasi hampir menyeimbangkan pengeluarannya melalui fotosintesis.
Akan tetapi pembakaran kayu dan bahan bakar fosil  menambahkan lebih banyak lagi CO2 ke atmosfir. Sebagai akibatnya jumlah CO2 di atmosfer meningkat. CO2 dan O2 atmosfer juga berpindah masuk ke dalam dan ke luar sistem akuatik, dimana CO2 dan O2 terlibat dalam suatu keseimbangan dinamis dengan bentuk bahan anorganik lainnya.
1.      Daur nitrogen
Di alam, Nitrogen terdapat dalam bentuk senyawa organik seperti urea, protein, dan asam nukleat atau sebagai senyawa anorganik seperti ammonia, nitrit, dan nitrat.
• Tahap pertama
Daur nitrogen adalah transfer nitrogen dari atmosfir ke dalam tanah. Selain air hujan yang membawa sejumlah nitrogen, penambahan nitrogen ke dalam tanah terjadi melalui proses fiksasi nitrogen. Fiksasi nitrogen secara biologis dapat dilakukan oleh bakteri Rhizobium yang bersimbiosis dengan polong-polongan, bakteri Azotobacter dan Clostridium. Selain itu ganggang hijau biru dalam air juga memiliki kemampuan memfiksasi nitrogen.
• Tahap kedua
Nitrat yang di hasilkan oleh fiksasi biologis digunakan oleh produsen (tumbuhan) diubah menjadi molekul protein. Selanjutnya jika tumbuhan atau hewan mati, mahluk pengurai merombaknya menjadi gas amoniak (NH3) dan garam ammonium yang larut dalam air (NH4+). Proses ini disebut dengan amonifikasi. Bakteri Nitrosomonas mengubah amoniak dan senyawa ammonium menjadi nitrat oleh Nitrobacter. Apabila oksigen dalam tanah terbatas, nitrat dengan cepat ditransformasikan menjadi gas nitrogen atau oksida nitrogen oleh proses yang disebut denitrifikasi.
2.      Daur Fosfor
Posfor merupakan elemen penting dalam kehidupan karena semua makhluk hidup membutuhkan posfor dalam bentuk ATP (Adenosin Tri Fosfat), sebagai sumber energi untuk metabolisme sel.
Posfor terdapat di alam dalam bentuk ion fosfat (PO43-). Ion Fosfat terdapat dalam bebatuan. Adanya peristiwa erosi dan pelapukan menyebabkan fosfat terbawa menuju sungai hingga laut membentuk sedimen. Adanya pergerakan dasar bumi menyebabkan sedimen yang mengandung fosfat muncul ke permukaan. Di darat tumbuhan mengambil fosfat yang terlarut dalam air tanah
Herbivora mendapatkan fosfat dari tumbuhan yang dimakannya dan karnivora mendapatkan fosfat dari herbivora yang dimakannya. Seluruh hewan mengeluarkan fosfat melalui urin dan feses.Bakteri dan jamur mengurai bahan-bahan anorganik di dalam tanah lalu melepaskan pospor kemudian diambil oleh tumbuhan.
3.      Daur Air
Air di atmosfer berada dalam bentuk uap air yang natinya akan mengalami siklus hidrologi. Uap air berasal dari air di daratan dan laut yang menguap karena panas cahaya matahari. Sebagian besar uap air di atmosfer berasal dari laut karena laut mencapai tigaperempat luas permukaan bumi. Uap air di atmosfer mengalami kondensasi menjadi awan yang turun ke daratan dan laut dalam bentuk hujan. Air hujan di daratan masuk ke dalam tanah membentuk air permukaan tanah dan air tanah.
Tumbuhan darat menyerap air yang ada di dalam tanah. Dalam tubuh tumbuhan air mengalir melalui suatu pembuluh. Kemudian melalui tranpirasi uap air dilepaskan oleh tumbuhan ke atmosfer. Transpirasi oleh tumbuhan mencakup 90% penguapan pada ekosistem darat.
Hewan memperoleh air langsung dari air permukaan serta dari tumbuhan dan hewan yang dimakan, sedangkan manusia menggunakan sekitar seperempat air tanah. Sebagian air keluar dari tubuh hewan dan manusia sebagai urin dan keringat.
Air tanah dan air permukaan sebagia mengalir ke sungai, kemudian ke danau dan ke laut. Siklus ini di sebut Siklus Panjang. Sedangkan siklus yang dimulai dengan proses Transpirasi dan Evapotranspirasi dari air yang terdapat di permukaan bumi, lalu diikuti oleh Presipitasi atau turunnya air ke permukaan bumi disebut Siklus Pe